
AD-A260 812

RL-TR-92-181 ELECTE
In-House Report FEB 1 7 199311
September 1992 f C

HIGH LEVEL DESIGN FOR
DISTRIBUTED APPLICATION
INSTRUMENTATION

Vaughn T. Combs, Cheryl L. Blake, liLt, USAF

APPROVED FOR PUBLIC RELEASE," DISTRIBUTION UNLIMITED.

93-02983

Rome Laboratory
Air Force Systems Command

Griffiss Air Force Base, New York

93 2 .

This report has been reviewed by the Rome Laboratory Public Affairs
Office (PA) and is releasable to the National Technical Information Service
(NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

RL-TR-92-181 has been reviewed and is approved for publication.

APPROVED:

ANTHONY F. SNYDER, Chief
C2 Systems Division

FOR THE COMMANDER:

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome
Laboratory mailing list, or if the addressee is no longer employed by
your organization, please notify RL (C3AB) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE iFormApproved 88
Pda:c reporxt• buromn f&rs cdkb ri ntormatron is ezrnated to average i rxxw pe response, rck.z -g trv trne for revuVg nstructi-s. seatrcrxg esr-g o:xa soa.'
gathafng and rrWtWVVg u" daa rveede wi; con arv rig " revergt ctheo e d tio ymnof SSend corrrments rega Vt-,s btf 'n estrnate of arc omef a-re-1c c,

colled-r i •E crruxy ro•tr vg migges-r for red"rV tr•s bu.den to Watwrgcn Headw rts Seryces. orectorate for rorrrymta Operati rnRepos 5r

Davis HK~way, Sute 1204, A~gt VA 2=-43Z and to tre Office of Mawgarnwt erd Bu.dgKr Paperwork Rejto Popea (C704 0188 W asrwqýr- CC -"Z

1. AGENCY USE ONLY (Leave Blank) 2- REPORT DATE 13. REPORT TYPE AND DATES COVERED

September 1992 In-House

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
HIGH LEVEL DESIGN FOR DISTRIBUTED APPIICATION PE - 62702F
INSTRUMENTATION PR - 5581

TA - 28
6. AUTHOR(S) WUL - 17

Vaughn T. Combs, Cheryl L. Blake, l/Lt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Rome Laboratory (C3AB) REPORT NUMBER

525 Brooks Road RL-TR-92-181

Griffiss AFB NY 13441-4505

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) .10. SPONSORING.'MONITORING

Rome Laboratory (C3AB) AGENCY REPORT NUMBER

525 Brooks Road
Griffiss AFB NY 13441-4505

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Cheryl Blake/C3AB (315) 330-2158
l/Lt, USAF

12a. DISTRIBUTIONIAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT(m-u'n 2m -cs)

This paper describes the high level design for a distributed application instrumenta-

tion package. The instrumentation package provides monitoring tools to aid application

designers in developing and understanding the behavior of their applications within an

object-oriented distributed environment. The package consists of a general query-

based system for the collection of events that occur within an application and a di•-

play system for processing and presenting the events. These events are collected

through the use of probes which register events with a distributed database. Calls

to these probes are embedded within the code to be instrumented in order to mark the

occurrence of a specific event. The instrumentation package will provide a library of

pre-defined probes based on events that adhere to the object/threrad model (e.g. thread

entrances into objects, thread exits from objects, etc.) and will al• allow for user-

defined probes. The display to be provided will represent object/th•dra interactions.

The design is built flexibly so as to permit a wide range of events and di•plays to he

used with the package.

14. SUBJECT TERMS S NJ•MBL= A:l S

Distributed Computing, Software Instrumentation, Heterogeneous ____

Computing 6 PRPCE C=.E

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITAlION Of AilSII ,'C i
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN 7540-01-28&5005ý r3Z

2•98 C

m = i m mm• • i mBII I

TABLE OF CONTENTS

1.0 IN TRO D U CTIO N .. 1

2.0 B A CK G R O U N D .. 1

3.0 TESTING STRATEGIES .. 3
3.1 MUTATION TESTING .. 3
3.2 DECISION TO DECISION PATH (DD-PATH) TESTING -

BRANCH TESTING ... 4

4.0 AUTOMATED TESTING TOOLS ... 6
4 .1 M O T H R A .. 7
4 .2 R X V P 80 ... 1 0

5.0 TH E TE ST PR O G R A M ... 1 1

6.0 CORRECT PROGRAM .. 13
6.1 MOTHRA - STATEMENT ANALYSIS MUTANTS 13
6.2 MOTHRA - PREDICATE & DOMAIN MUTANTS 13
6 .3 R X V P 80 ... 2 0

7.0 DOMAIN ERROR .. 20
7.1 MOTHRA - STATEMENT ANALYSIS MUTANTS 20
7.2 MOTHRA - PREDICATE & DOMAIN MUTANTS 25
7 .3 R X V P 80 ... 3 2

8.0 MISSING STATEMENT ERROR .. 34
8 .1 M O TH R A .. 3 4
8 .2 R X V P 80 ... 3 4

9.0 COMPUTATION ERROR .. 41
9 .1 M O T H R A .. 4 1
9 .2 R X V P 80 ... 4 6

Accesir n For
10.0 CO N CLU SIO N .. . NTIS CRA&I

DoIC TAB
jU nannounced
!J,1sfification

DTIC QUALITY INSPECTPI 3 t By
Di stribution I

Availability C

Avail and,Oas? Soecial

LIST OF FIGURES

FIGURE PAGE

1 Directed Flow Graph ... 5
2 DD-Path Exam ple .. 6
3 The M utation Process ... 8
4 Execution Coverage Analysis 12
5 Correct Triangle Program 14
6 Initial Set of Test Cases ... 1 5
7 Triangle Program DD-Paths 21
8 D D -Path Tree ... 2 3
9 Triangle Program - (Domain Error) 24

10 Mothra - Live SAM (Domain Error) 27
11 Mothra - Live P/D (Domain Error) 30
12 DD-Path Execution (Domain Error) 3 33
13 Triangle Program (Missing Statement) 35
14 Mothra - Live SAM (Missing Statement) 37
15 DD-Path Execution (Missing Statement) 40
16 Triangle Program (Computation Error) 42
17 Mothra - Live SAM (Computation Error) 44
18 DD-Path Execution (Computation Error) 47

LIST OF TABLES

TABL PAG

1 Non-Traditional Testing Strategies 2
2 Mothra Mutant Operators 9
3 Mothra - Statement Analysis Mutants 18
4 Mothra - Domain/Predicate Mutants 19
5 Mothra - SAM (Domain Error) 26
6 Mothra - Domain/Predicate Mutants 29

, 7 Mothra - SAM Missing Statement 36
"8 Mothra SAM Computation Error 43

ii

1.0 INTRODUCTION

In the past decade, many specialized software testing
philosophies and testing techniques have evolved. Some of these
testing philosophies are time-consuming and impractical while others
are practical but only for small programs. Automating the testing
process is a goal that needs to be attained for testing to be cost-
effective and practical for any size or type of software program. Two
testing techniques have been explored under Rome Laboratory
(C3CB) R&D programs. These programs developed automated testing
tools which support these techniques. One testing technique is
mutation analysis and the other technique is decision-to-decision
path analysis. A comparison of these testing techniques via two test
tools was performed. This technical report describes the testing
process and the results of this comparison.

2.0 BACKGROUND

Testing is that phase in the software life cycle where a program
is symbolically or physically executed with the intent of gaining
confidence in its correctness.1 The basic problem, therefore, is
finding a test selection criterion, a rule to select sets of test cases that
will constitute a reliable test. Early in the 1970's, as part of software
testing's theoretical foundations, J. B. Goodenough and S. L. Gerhart
defined the concept of a reliable test which they believed was
sufficient for verifying A program's correctness. As it turned out
their ambitious theory was not practical in the real world.

Real world software testers began implementing test strategies
which work on particular classes of programs or particular classes of
errors. There are two classes of testing strategies: non-traditional
and traditional. The most widely used testing strategies are
traditional (also called manual) test strategies which include
deskchecking, code walkthroughs, and inspections. Non-traditional
test strategies are more extensive. TABLE 1 shows the non-
traditional strategies in a matrix format. Non-traditional strategies
include structure dependent and structure independent test
strategies, both of which may be categorized as either deterministic
or random strategies.

1 A. Goel, Syracuse University Publication, September 1987.

Structure dependent testing is based on the structural
properties of the program code. Structure independent testing is
based on the specifications (requirements) of the program, and is
not concerned with the design or code structure. Deterministic
testing is performed by taking into account the structure and/or
specifications of the program during test case selection. Random
testing assumes that all test input is created equal. It assumes that
any input is as good, for testing purposes, as any other input.

ýStructure Dependent Structure Independent

(White Box) (Black Box)

Statement Testing Equivalence Partitioning

Branch Testing Boundary Value
Analysis

e~w Path Testing

V4, -Cause-Effect Graphing
Structured Testing

Design-Based Functional
Symbolic Testing Testing

Domain Testing

Mutation Testing

Randomized Partition SIAD Tree Testing
Testing

NON-TRADITIONAL
TESTING STRATEGIES

TABLE 1

Since it is virtually impossible to test a program with all
possible inputs to see if it produces the correct outputs, current
research efforts have concentrated on testing strategies which are
more practical than such brute force methods. Test strategies must
be reasonable in effort, in order to be cost effective. For these
reasons, testing strategies which select only a small subset of the
entire possible input domain are being pursued. While these

2

testing techniques cannot guarantee program correctness, they
provide the tester with a higher level of confidence in the program.
Thus, as stated by E. W. Dijkstra and generally accepted as a maxim,
"testing can only be used to detect the presence of errors, never their
absence."

The two testing strategies examined here are structure
dependent strategies.

3.0 TESTING STRATEGIES

3.1 MUTATION TESTING

Mutation testing is based on the "competent programmer
hypothesis", it assumes the program under test has been written by
a skilled (i.e., competent) programmer. 1 It then follows that the
program would be almost correct, and differ from a truly correct
program by only a few small errors. Mutation testing allows a tester
to gauge whether a set of test data is adequate to detect those errors.
This strategy makes a series of minor changes to a program being
tested, creating a series of programs known as mutant programs.
Each program is the same as the original program except for a single
syntactic change. This minor change can be in the form of constant
replacement, arithmetic, relational, logical or logical operator
replacement, statement deletion, and statement addition (i. e.,
Return, Continue, or a Trap statement). 2

The process consists of determining the expected output for
each test case of the original program, generating a set of mutant
programs, determining the mutant output for each test case, and
comparing the mutant output with the expected output for each test
case and mutant. If the mutant's output is different from the
expected output for a test case, then that mutant is said to be
discovered and "killed" by that test case and the mutant is said to be
"dead." Otherwise, it remains "alive" but may still be killed by a
subsequent test case. Live mutants provide important test
information. A mutant may remain alive for one of three reasons:

I R. A. DeMillo, et al., Purdue University/University of Florida, Software
Engineering Research Center, "An Overview of the Mothra Software Testing
Environment," SERC-TR-3-P.
2 R. A. DeMillo, et al., Purdue University/University of Florida, Software
Engineering Research Center, "The Mothra Software Testing Environment,"
User's Manual, SERC-TR-4-P.

3

a. The test da.. is inadequate. This means that the test data
may not have covered (i.e., exercised) that portion of the program.

Example: In the test program (ref, page 14) the input test data "(3,3,5)"
and "(5,3,3)" each exercise different parts of the program. If one is not
included in the test data, part of the program will not be exercised.

b. The mutant program is equivalent to the original program.
If the mutant program and the original program always produce the
same output, there is no way for the test data to distinguish between
the original program and the mutant program. It may mean that the
programs are essentially the same.

Example: Consider a program that first checks all input variables to
make sure they are greater than zero, and exits if the inputs are
negative. One mutant type is the "absolute value insertion" (ref, Table
2). This mutant operator replaces each variable in a program by the
absolute value of the variable. However, since the original program is
designed such that that particular variable is always positive, this
mutant will always produce the same output as the original program,
and is therefore equivalent.

c. There exists an error in the program, If the .ut of the
original program and the mutant program is the same and the test
data has exercised that portion of code, and the mutant program is
not equivalent to the original program, then an error is uncovered.

Example: See Figures 10, 11, 14, and 17 for mutants remaining which
remain after test case execution and are not equivalent to the original
program.

3.2 DECISION TO DECISION PATH (DD-PATH) TESTING - BRANCH
TESTING

DD-PATH analysis uses a very simple structure dependent test
criteria strategy; i.e., cover all the edges (branches) of the program's
directed flow graph (ref FIGURE 1). This insures that not only every
branch of the program will be executed at least once, but that every
statement will also be executed. DD-PATH testing is frequently
called Branch testing. DD-PATH testing insures the execution of
every loop and control flow at least once. It involves inserting
statements or routines into the program to be tested to record
properties of the executing program. It does not affect the
functional behavior of the program. A decision point is either the
entry point of a module, or a place where more than one possible

4

path, or decision occurs. The path that is followed from one decision
point to the next is called a decision-to-decision pathl (ref FIGURE 2).

NODES
(DECISIONS) EDGES

(BRANCHES)

DIRECTED FLOW GRAPH
FIGURE 1

Path testing is a more stringent test criterion than DD-PATH
testing. Path testing covers all the edge-to-edge transitions in the
directed flow graph. This means that path testing covers all possible
ways to traverse from the start of the program to its ending
statement. Most times it is impossible to test all the paths or
combinations of branches in a large program. Programs with many
loops may have an infinite number of paths. However, it is possible
to test all DD-PATHs. Analytic information consists of a listing of the
DD-PATHs of the program undergoing analysis and the number of
times each DD-PATH is executed when the program is executed. For
more effective testing, all DD-PATHs and as many paths or branch
combinations as possible should be tested. The goal is to increase the
amount of code tested.

1 General Research Corporation, "RXVP80, The Verification and Validation
System for Fortran," User's Manual, 1985, 5-9.

5

ENTRY

DD-path 1
is

module entry

DD-path 2 1 DD-path 3
is is

true branch false branch

DD-path 4
is

true branch ,TRUE DD-path5

FALSE false branch

SEXI.__T

DECISION-TO-DECISION PATH EXAMPLE

FIGURE 2

4.0 AUTOMATED TESTING TOOLS

Manually testing software can be a very tiresome, time
consuming, costly, and error-prone task. Since a great deal of
manhours are traditionally expended in program testing, automated
testing tools are gaining acceptance, especially in space and military
applications. According to E. Miller in "Structurally Based Automatic
Program Testing,"' most application programs written in FORTRAN
can be tested minimally thorough with a relatively small number of
test cases. A test is minimally thorough if each and every branch in

1 Miller, E. F., et al., "Structurally Based Automatic Program Testing," EASCON-
74, Washington D.C., October 1974.

6

its directed flow graph is traversed at least once during the test. 1

Two automated testing systems, which can be used to provide
minimally thorough testing, have been developed under sponsorship
of Rome Laboratory and are described in the following sections.

4.1 MOTHRA

MOTHRA is a mutation-based testing system that allows a
tester to perform mutation analysis on a program (ref FIGURE 3).
The tester chooses the classes and types of mutations (ref TABLE 2)
to be performed and the test strength desired (i. e., percentage of
selected mutants that will be enabled). The tester also supplies the
test cases to be used as test input. The system executes the test data
on the original program and the mutant program and compares the
output. If the output resulting from the mutant program is different
from the original output then the mutant is considered dead. 2 If the
outputs are the same, the mutant is not detected and is considered
alive. The objective is to kill all of the mutants.

MOTHRA supports three super-classes of mutation analyses:

a. Statement analysis. Mutated statement and control
structures are introduced into the program code. These
mutants test for traditional statement analysis, testing that all
statements are executed and that each statement has an effect.

b. Predicate and domain analysis. Mutated expressions,
arithmetic operators, and constants are introduced into the
program code. These mutants test predicate boundaries and
data domains.

c. Coincidental correctness. Scalar variables, array references,
and constants are replaced with other values. These mutated
programs detect errors that are undetected by other testing
strategies when, due to the nature of the test data, the
program just happens to (coincidentally) produce the correct
output results.

1 Huang, J. C., "An Approach to Program Testing," ACM Computing Surveys,

September 1975, 113-128.
2 R. A. DeMillo, et al., Purdue University/University of Florida, Software
Engineering Research Center, "An Overview of the Mothra Software Testing
Environment," SERC-TR-3-P, 1-3.

7

USER INTERFACE

E-0

THE MUTATION PROCESS

FIGURE 3

z8

Abbreviations for MUTANT TYPES are:

aar array reference for array reference replacement
abs absolute value insertion
acr array reference for constant replacement
aor arithmetic operator replacement
asr array reference for scalar variable replacement
car constant for array reference replacement
cnr comparable array name replacement
crp constant replacement
csr constant for scalar replacement
der DO statement end replacement
dsa data statement alterations
gir goto label replacement
Icr logical connector replacement
ror relational operator replacement
rsr return statement replacement
san statement analysis (replacement by TRAP)
sar scalar variable for array reference replacement
scr scalar for constant replacement
sdl statement deletion
src source constant replacement
svr scalar variable replacement
uoi unary operator insertion

Abbreviations for MUTANT CLASSES:

ary array mutations (aar,car,cnr,sar)
con constant-related mutations (acrscr,src)
ctl control structure mutants (glrderrsr)
dmn domain perturbations (abscrp,dsa,uoi)
opm operator mutants (aor)
prd operand mutants (lcr,ror)
scl scalar mutants (asr,csr,svr)
stm statement mutants (san,sdl)

Abbreviations for MUTANT SUPER CLASSES:

all all the mutants
cca coincidental correctness analysis (ary,scl,opm,con)
pda predicate and domain analysis (dmn,prd)
sal statement analysis (stm, ctl)

MOTHRA MUTANT OPERATORS

TABLE 2

9

MOTHRA has evolved from previous work in mutation systems.
The first was PIMS in 1979, a FORTRAN subset prototype, EXPER an
experimental vehicle in 1980, CMS.1 a COBOL system in 1981 and
FMS.3 an enhancement of EXPER in 1983. MOTHRA is designed to
allow the testing of software at all test stages in the development
process. It can accommodate units ranging from 10 to 100,000,000
lines of code. It currently supports FORTRAN 77, and follow-on work
is planned to support the Ada programming language. An attractive
feature of mutation analysis is that it includes statement and branch
coverage, as it performs mutation analysis. In addition, the mutation
score of a particular program (i. e., dead mutants/total # of mutants)
indicates the adequacy of the data used to test the program, and is
also a potential predictor of operational reliability. A potential
problem of mutation analysis systems is the amount of disk storage
and manpower required for the testing of the programs. However,
MOTHRA allows the user to choose a subset of mutants that is very
manageable and still adequate for testing purposes.

MOTHRA was developed by Georgia Institute of Technology
(with a subcontract to Purdue University), under the sponsorship of
Rome Laboratory contract F30602-85-C-0255. MOTHRA currently
runs under 4.3BSD UNIX', System V UNIX, and Ultrix-32 V3.02.

4.2 RXVP803

Research EXportable Verification Program for the 80's
(RXVP80) is a software testing tool used to test and verify FORTRAN
programs. RXVP80 can analyze FORTRAN 66, FORTRAN 77 and most
FORTRAN extensions to the standards.

RXVP80 performs static as well as dynamic analysis of
programs. Static analyses are those which do not require execution
of the user's program, but which collect information on the structure
of the program. Static analyses provides information on control
structure, symbol usage, calling hierarchy, as well as unreachable
code.

Dynamic analyses require execution of the user's program and
provides run-time execution coverage information. As part of
execution coverage analysis (ref FIGURE 4), the user's source code is

1 UNIX is a trademark of Bell Laboratories.
2 Ultrix and Ultrix-32 are trademarks of Digital Equipment Corporation.
3 RXVP80 is a trademark of General Research Corporation, Santa Barbara, CA.

10

Smum nn•mu nnne o ~ln • • nullln

instrumented (i.e., software probes are inserted) with statements
that trace the execution of the program. The execution of this
instrumented program produces a set of data that trace the DD-
PATHs and/or statements executed during the test run. A number of
reports that show the extent of program testing is then produced
from the data. The information provided indicates the thoroughness
of the tests, including which DD-PATHs are taken, which DD-PATHs
are not taken, and how often each DD-PATH is traversed. RXVP80
provides the capability to test for 100% branch and statement
coverage of a program.

The dynamic analysis portion of the RXVP80 was used in
analysis of the test program and its performance was matched
against both MOTHRA's statement and predicate & domain analyses
capabilities as these strategies were similar in their proposed
detection of errors.

RXVP80 is a commercial product from General Research
Corporation (Santa Barbara, CA) that resulted from a Rome
Laboratory (C3CB) effort entitled "FORTRAN Automated Verification
System" (FAVS), contract F30602-76-C-0436.

5.0 THE TEST PROGRAM

The test program used for automated testing by MOTHRA and
RXVP80 determines the type of triangle (scalene, isosceles, or
equilateral) from the data that is entered. The program user must
provide the length of the three sides of the triangle as integer inputs.
The program checks for negative integers or zero in the input and, if
found, it determines the input to be "not a valid triangle." A triangle
program was chosen because of its popularity in the software testing
literature. The triangle classification program in "Theories of
Program Testing & the Application of Revealing Subdomains" by
Weyuker and Ostrand is widely used to validate software testing
techniques. The test program used in this experiment is somewhat
different. In this program, the input does not have to be in
ascending or descending order. For example, the input can be
entered as, (3,3,5), (5,3,3), or (3,5,3). Because this program allows
any order, to test this program you must test all combinations of
input! Even if the tester does not immediately see this at first
glance, by using these tools it becomes apparent that, for example,
(3,3,5) does not exercise the same statements as (5,3,3). Thus, test

11

U C

xz

0

Nit W

w 2 0

or-w

U9

EXECUTION COVERAGE ANALYSIS
FIGURE 4

12

cases must be built from information learned after exercising the
tools and examining the results.

The triangle subroutine (ref FIGURE 5) is a correct program --
it contains no errors. Therefore, this program was input to both test
tools and the output was examined. This was the "control program."
Next, three types of errors were introduced into the program: a
domain error, a computation error, and missing statement error.
Then each test tool was used on each of the control program's
variants (i.e., errors). The types of errors introduced into the
variants and the results of testing them are discussed in the
following sections.

6.0 CORRECT PROGRAM

6.1 MOTHRA - STATEMENT ANALYSIS MUTANTS

Using MOTHRA the first class of mutants selected was the
STATEMENT ANALYSIS class, which incltdes statement mutants
(statement replaced by TRAP, and statement deletion) and control
structure mutants (GOTO label replacement, DO statement end
replacement, and return statement replacement). All mutants that
belong to the statement analysis class (i. e., the test strength was
100) were enabled. Using 35 test cases (ref FIGURE 6) on the correct
program, all mutants were killed except one. Examination of this
mutant program revealed that it was essentially the same as the
original program and, therefore, the mutant program was
"equivalenced" (ref TABLE 3). To equivalence a mutant program
means to declare it to be functionally the same as the original
program. For the triangle program, MOTHRA's replacement of "GOTO
110" with the RETURN statement did not change the program since,
at that point in the program, the variable "MATCH" already had the
correct return value, making the mutant equivalent to the original
program. Thus, all mutants were accounted for and, as expected, the
presence of any errors was not detected.

6.2 MOTHRA - PREDICATE & DOMAIN MUTANTS

Using MOTHRA, the second class of mutants selected was the
PREDICATE AND DOMAIN class, which includes domain perturbations
(absolute value insertion, constant replacement, data statement
alterations, and unary operator insertion) and operand mutants
(logical connector replacement, and relational operator replacement).

13

SUBROUTINE TRIANGLE(I,J,K,MATCH)

integer i,j,k,match

C MATCH is output from the subroutine:
C MATCH = I IF THE TRIANGLE IS SCALENE
C MATCH = 2 IF THE TRIANGLE IS ISOSCELES
C MATCH = 3 IF THE TRIANGLE IS EQUILATERAL
C MATCH = 4 IF NOT A TRIANGLE

C After a quick confirmation that it's a legal
C triangle, detect any sides of equal length

IF (I .LE. 0 .OR. J .LE. 0 .OR. K .LE. 0) GOTO 500
MATCH=0
IF (I.NE.J) GOTO 10
MATCH=MATCH+ I

10 IF (I.NE.K) GOTO 20
MATCH=MATCH+2

20 IF (J.NE.K) GOTO 30
MATCH=MATCH+3

30 IF (MATCH.NE.0) GOTO 100

C Confirm it's a legal triangle before declaring it to be scalene
IF (I+J.LE.K) GOTO 500
IF (J+K.LE.I) GOTO 500
IF (I+K.LE.J) GOTO 500
MATCH=1
Return

C Confirm it's a legal triangle before declaring
C it to be isosceles or equilateral
100 IF (MATCH.NE. 1) GOTO 200

IF (I+J.LE.K) GOTO 500
110 MATCH=2

RETURN
200 IF (MATCH.NE.2) GOTO 300

IF (I+K.LE.J) GOTO 500
GOCO 110

300 IF (MATCH.NE.3) COTO 400
IF (J+K.LE.I) GOTO 500
GOTO 110

400 MATCH=3
RETURN

C Can't fool this program, that's not a triangle
500 MATCH-4

RETURN
END

CORRECT TRIANGLE PROGRAM

FIGURE 5

14

Test Cases for triangle.tc.

Values for case 1. Values for case 2.
13 12
J 4 J 2
K5 K2

Values for case 3. Values for case 4.
12 15
J 2 J 4
KI K3

Values for case 5. Values for case 6.
1 0 I -1
J0 J0
K0 K3

Values for case 7. Values for case 8.
14 12
J 3 J 3
K2 K4

Values for case 9. Values for case 10.
12 16
J 4 J 8
K2 K 10

Values for case 11. Values for case 12.
I -1 I -1
J -1 J 2
K -1 K -1

Values for case 13. Values for case 14.
12 12
Ji J 0
K2 K2

INITIAL SET OF TEST CASES

FIGURE 6

15

Values for case 15. Values for case 16.
12 I 1
J 2 J 2
K-I K 2

Values for case 17. Values for case 18.
I 11 0
Ji1 JI
KI K2

Values for case 19. Values for case 20.
I 1 I 1
J 2 J -2
K0 K5

Values for case 21. Values for case 22.
13 1 1
J 3 J 5
K2 K5

Values for case 23. Values for case 24.
1 7 1 10
J 5 J5
K5 K5

Values for case 25. Values for case 26.
15 15
J 5 J 10
K10 K 5

Values for case 27. Values for case 28.
1 0 12
J0 J0
K2 K0

INITIAL SET OF TEST CASES

FIGURE 6 (continued)

16

Values for case 29. Values for case 30.
I 11 3

J 1 J 3

K2 K3

Values for case 31. Values for case 32.
1 0 I 1
J 3 J 5
K7 K9

Values for case 33. Values for case 34.
I -1 1 1
J5 J0
K1 K5

Values for case 35.
1 -20
J -20
K -20

INITIAL SET OF TEST CASES

FIGURE 6 (continued)

17

TYPE I GENERATED II LIVE L%LIVE EQUIV DEAD

glr 126 0 0.0 0 128
rsr 38 0 0.0 1 37
san 36 0 0.0 0 36
sdl 41 0 0.0 0 41
TOTALS 243 0 0.0 1 242

CLASS GENERATED I LIVE %LIVE [EQUIV I DEAD

ary 0 0 0.0 0 0
con 0 0 0.0 0 0
ctl 166 0 0.0 1 165
dmn 0 0 0.0 0 0
opm 0 0 0.0 0 0
prd 0 0 0.0 0 0
sci 0 0 0.0 0 0
stm 77 0 0.0 0 77

SUPERCL GENERATED LIVE L %LIVE J[EQUIV jI DEAD

all 243 0 0.0 1 242
cca 0 0 0.0 0 0
pda 0 0 0.0 0 0
sal 243 0 1 0.0 1 1 242

MOTHRA - STATEMENT ANALYSIS MUTANTS
(CORRECT PROGRAM)

TABLE 3

18

Using the same 35 test cases as in the statement analysis
mutants test run described in section 6.1 above, 108 mutants
remained alive. The mutants were then examined and it was found
that many of them could be equivalenced. For example, the absolute
value insertion mutant type (abs) was equivalenced at several points
in the program since at those points, negative values were impossible
due to the structure of the code. Thirty-one mutants were then left
remaining. With these few remaining mutants, it was much easier to
see which statements were not being executed. Additional test cases
were then added and the remaining mutants were killed (ref TABLE
4). This confirmed the expected output, since it was known that the
program was correct.

TYPE GENERATED LIVE %LIVE EQUIV][DEAD
abs 126 0 0.0 77 49
crp 29 0 0.0 0 29
lsr 13 0 0.0 1 12
ror 99 0 0.0 4 95
uoi 83 0 0.0 2 81
TOTALS 3 350=1 0][0.0 . 84 11 266

'CLASS GENERATED LIVE %LIVE EQUIV9 y ' DEAD
ary 0 0 0.0 0 0
con 0 0 0.0 0 0
ctl 0 0 0.0 0 0
dmn 238 0 0.0 79 159
opm 0 0 0.0 0 0
prd 112 0 0.0 5 107
scl 0 0 0.0 0 0
stm 0 0 0.0 0 0

SUPERCL j[GENERATED LIVE %LIVE j[EQUIV II DEAD
all 350 0 0.0 84 266
cca 0 0 0.0 0 0
pda 350 0 0.0 84 266
sal 0 0 0.0 0 j 0

MOTHRA - DOMAIN & PREDICATE MUTANTS
(CORRECT PROGRAM)

TABLE 4

19

6.3 RXVP80

Using RXVP80, an output report was created which identified
all the DD-PATHs in the triangle program (ref FIGURE 7). A DD-PATH
tree (ref FIGURE 8) was manually created to aid understanding of the
triangle program and determine exactly how RXVP80 created the DD-
PATHs. On entry to a function or subroutine, the entry point is
always DD-PATH 1. For IF statements, the TRUE branch is assigned
an even number DD-PATH and the FALSE branch an odd number DD-
PATH.

By using RXVP80 on the triangle program, it was found that the
original 35 test cases exercised 100% of the program DD-PATHs, and
that the output from each test case was correct (as it should be, since
this is a correct program). Thus, as was expected, no errors were
found.

7.0 DOMAIN ERROR

An error was introduced into the correct program, and both the
MOTHRA and RXVP80 were used to see if they would detect the
error. The triangle program was modified such that a domain error
was created. A domain error occurs when a specific input follows the
wrong path due to an error in the control flow of the program.1 The
error was created by modifying the predicate on line 18 of the
triangle subroutine (ref FIGURE 9). Line 18, IF (I .NE. J) GOTO 10, was
changed to: IF (-I .NE. J) GOTO 10.

7.1 MOTHRA - STATEMENT ANALYSIS MUTANTS

The domain error was created via the VAX/ULTRIX editor. The
program was then entered into the MOTHRA system. The statement
analysis class was selected, and all mutants belonging to that class
were enabled (i. e., the test strength was 100).

When the test cases were entered, test case 3, test input (2,2,1)
gave an incorrect output. The triangle program output identified the
triangle as scalene when it should have been isosceles. This incorrect

I White, Cohen, and Zeil, "A Domain Strategy for Computer Program Testing,"
Computer Program Testing, September 1981, 103-113.

20

I >4

0z 0z oz oz oz oz oz oz
W (Z< Zl< Z< Z< Z< Z< Z< Z'<

M) Qm m~ 00 Io 0 Q zC ýCQ C .m c
co 0Q m mC m m

w4 (4 4 14 W4 (4 4 C4 1
C) w en(1 w41 W (w U) w0 w4(U) w4V) L(4(m (4()

I x 0< 041 < 4 <- 0.- <. 0.- < 0.-)

I)U9I (1)t V1() u) 1V2(1) u() (42(1) u) u) U) (10 u)

I H m-- -Ir-4 r-1 -1))-04 ar-i -1D r-H

zr. .DI- :r

OW 92W 14 0412 044 0404 040 (L 0 [L0 a,0 aIr ý l

u 1 0

0 -0
'AA

CH I EHa

4- <H 0 -H a

C) (f(4 C 4-)4)

I-) 2- 4Z4-4 8-

I 19140 0 4J)

'-4 I .- j2 V-1
ID 001 -4 4 '. 11 c) ý >) z

< < <- .19-4 (2 L0 L)
0 1(21 0ý1 0*-ic) D E

(4 Iý E H < 44MH(P l E4 F
.4 4. c 0) .4 6) 000 0

w4 W W9(91(0 4j l E C 0 4-4 a) ()
EH 4I = X-Z Z X 0 uQ) 0 0 0 H E

D I:31 E4 El Z -4)9' -4 0 0 o a) 0

0 0. A< Ej0 D m.-i '4- 19Q((
1 l 4. rý C.4I. Ol u41 H> C' 0 +-(+9 (ý a

U) wz 0 EJlZ 000 0 H
El C4 .14 .-. 11) (9 01 01 0 -I'C(7 z XE 2ý

D~ w H) 11 1-: 11 - 11C.. (11110w + + +4 it' z4
0 4r." n I4 x. 0 x "~ x~ x. -14 0 4 (a:

QIw CH 4) 11.-) u .4'(C)4 .(4 (2
I Ha E- El E-4 El E 4I UH 0 -4~Z ElH El C ~ E, E--

1 U) (. P-4 XIH 11 xIl ~ 4 IX~

" z1 4 2 N n L r 11 N m < '44-I. co~ ~ (7%C 4N 4 ý4 c4- M. C> 1. N m
E 1 (1 - < 1 4 4 -4 I-4 0-H 1-4 14-4 (N (l N c l

F41

I 0 0 0 44N 0 0

0-4 I-

01421

C* IImw c .c

D 11 = I D 1 7
E- I. E- Ct.

V) I) UZ UZ VZ U) U U U)

(I EIE ý E - -E , F
< <
a. 0I 0/ a,~U 11u, IL) (I L . CLC

0 m Cl 0 -0. 0 C n

44 0

I z I Cr 03 C NC) CD \f~
1 14 4) - CN3 0 CNN CD N CNN

E- 00 0 0 0 0 0 0 0
I 00 00 00 0 0 00 00

I~ C 0

I I a
I I

I Im I z

00 =,Xmm ýx

1I- 0 4j1 I < W0f C 4 1
I~ U . C xw I

'a)CD C C>
V)I U -'- C>I0C) U C

N In

I z-

I 1

I fu F4 ' C- C1

TRINGL PRGRMDDPAH

FIUR 7 (contnued

I GJJ I-22

ORDPAMh2 DD.PATh IIILEJ

MTH-0MATO H- AC DP~ OP~

IF

DD-PADDPAT TREE0-AT

FIGUR 8)

MATCH MA23

SUBROUTINE TRIANGLE(I,J,K,MATCH)

integer i,j,k,match

C MATCH is output from the subroutine:
C MATCH = I IF THE TRIANGLE IS SCALENE
C MATCH = 2 IF THE TRIANGLE IS ISOSCELES
C MATCH = 3 IF THE TRIANGLE IS EQUILATERAL
C MATCH = 4 IF NOT A TRIANGLE

C After a quick confirmation that it's a legal
C triangle, detect any sides of equal length

IF (I .LE. 0 .OR. J .LE. 0 .OR. K .LE. 0) GOTO 500
MATCH=0
IF (-I.NE.J) GOTO 10 -- DOMAIN ERROR
MATCH=MATCH+ 1

10 IF (I.NE.K) GOTO 20
MATCH=MATCH+2

20 IF (J.NE.K) GOTO 30
MATCH=MATCH+3

30 IF (MATCH.NE.0) GOTO 100

C Confirm it's a legal triangle before declaring it to be scalene
IF (I+J.LE.K) GOTO 500
IF (J+K.LE.I) GOTO 500
IF (I+K.LE.J) GOTO 500
MATCH=1
Return

C Confirm it's a legal triangle before declaring it to be isosceles or
C equilateral
100 IF (MATCH.NE.1) GOTO 200

IF (I+J.LE.K) GOTO 500
110 MATCH=2

RETURN
200 IF (MATCH.NE.2) GOTO 300

IF (I+K.LE.J) GOTO 500
GOTO 110

300 IF (MATCH.NE.3) GOTO 400
IF (J+K.LE.I) GOTO 500
GOTO 110

400 MATCH=3
RETURN

C Can't fool this program, that's not a triangle
500 MATCH=4

RETURN
END

TRIANGLE PROGRAM (DOMAIN ERROR)

FIGURE 9

24

output immediately indicates there is an error. MOTHRA was then
used to help pinpoint the error.

After inputting the original 35 test cases plus several
additional test cases, 18 mutants were still alive (ref TABLE 5). The
same mutant described in section 6.1 was equivalenced. Next,
possible reasons for the remaining mutants were examined.
Examination of Figure 10 shows that there are two groups of
remaining live mutants (mutants are identified in the program via
the "#" symbol). One group represents the mutants that are created
to replace the statement: IF (I+J .LE. K) GOTO 500. As shown in
Figure 10, the mutant statements for each original statement are
displayed beneath the statement they replace. When MOTHRA
executes, it replaces the original statement with one mutant
statement. Thus, as many new programs are created as mutant
statements. None of these were killed. Further examination shows
that this statement was never executed because of the statement
directly above it: IF (MATCH .NE. 1) GOTO 200. MATCH was never
being set to 1 so the program execution was always jumping to
statement 200. To find the reason for this, the other group of
mutants, those that were created to replace the statement: MATCH =
MATCH + 1, were checked. It was clear that this statement was not
being executed. The statement directly above it was examined: IF (-I
.NE. J) GOTO 10. What was happening was that the program was
always going to statement 10 because there was an error in the IF
statement. The error was found!

7.2 MOTHRA - PREDICATE & DOMAIN MUTANTS

Using MOTHRA, the predicate and domain class of mutants was
selected. Using the same test cases as those input to the correct
program previously mutated using the predicate and domain class,
three inputs gave incorrect outputs. Obviously the program was in
error and MOTHRA was used to try to find the error. After
numerous test case inputs, fifty-three mutants were remaining (ref
TABLE 6). The live mutants were examined (ref FIGURE 11). The
first set of mutants replaced the statement: MATCH = MATCH + 1. It
was clear that this statement was not being executed. To find a
reason for this, the code was examined. The previous statement: IF
(-I .NE. J) GOTO 10 indicated that the program execution was going to
statement 10 and not executing the MATCH = MATCH + 1 statement.

25

TYPE GENERATED LIVE I %LIVE EQUIV DEAD
glr 1 28 8 6.3 0 120
rsr 38 4 10.5 0 34
san 36 3 8.3 0 34
sdl 41 3 7.3 j 0 38

TOTALS [243 18 I 7.4 [0 [225

CLASS GENERATED LIVE] %LIVE I EQUIV DEAD

ary 0 0 0.0 0 0
con 0 0 0.0 0 0
ctl 166 12 7.2 0 154
dmn 0 0 0.0 0 0
opm 0 0 0.0 0 0
prd 0 0 0.0 0 0

scl 0 0 0.0 0 0

stm 77 6 7.8 0 71

SUPERCL GENERATED LIVE [%LIVE EQUIV DEAD
all 243 5 1 8 7. 0 225

cca 0 0 0.0
pda 0 0 010 0 0
sal 243 j 18 7.4 0 225

MOTHRA - STATEMENT ANALYSIS MUTANTS
DOMAIN ERROR

TABLE 5

26

SUBROUTINE TRIANGLE(I,J,K,MATCH)

integer i,j,k,match

C MATCH is output from the subroutine:
C MATCH = 1 IF THE TRIANGLE IS SCALENE
C MATCH = 2 IF THE TRIANGLE IS ISOSCELES
C MATCH = 3 IF THE TRIANGLE IS EQUILATERAL
C MA iCH = 4 IF NOT A TRIANGLE

C After a quick confirmation that it's a legal
C triangle, detect any sides of equal length

IF (I .LE. 0 .OR. J .LE. 0 .OR. K .LE. 0) GOTO 500
MATCH=0
IF (-I.NE.J) GOTO 10 -- DOMAIN ERROR
MATCH=MATCH+I

rsr 134 # RETURN
san 170 # *** TRAP *
sdl 208 # CONTINUE
10 IF (I.NE.K) GOTO 20

MATCH=MATCH+2
20 IF (J.NE.K) GOTO 30

MATCH=MATCH+3
30 IF (MATCH.NE.0) GOTO 100

C Confirm it's a legal triangle before declaring it to be scalene
IF (I+J.LE.K) GOTO 500
IF (J+KLE.I) GOTO 500
IF (I+K.LE.J) GOTO 500
MATCH=1
Return

C Confirm it's a legal triangle before declaring it to be isosceles
C or equilateral
100 IF (MATCH.NE.1) GOTO 200

IF (I+J.LE.K) GOTO 500
rsr 152 # RETURN
san 188 # *** TRAP *
sdl 227 # CONTINUE
rsr 153 # IF ((I + J) .LE. K) RETURN
san 189 # IF ((I + J) .LE. K) *** TRAP **
sdl 228 # IF ((I + J) .LE. K) CONTINUE
glr 73 # IF ((I + J) .LE. K) GO TO 400
glr 74 # IF ((I + J) .LE. K) GO TO 300
glr 75 # IF ((I + J) .LE. K) GO TO 200
glr 76 # IF ((I + J) .LE. K) GO TO 110

MOTHRA . "LIVE" STATEMENT ANALYSIS MUTANTS
DOMAIN ERROR

FIGURE 10

glr 77 # IF ((I + J) .LE. K) GO TO 100

27

glr 78 # IF ((I + J) .LE. K) GO TO 30
glr 79 # IF ((I + J) .LE. K) GO TO 20
glr 80 # IF ((I + J) .LE. K) GO TO 10
110 MATCH=2

RETURN
200 IF (MATCH.NE.2) GOTO 300

IF (I+K.LE.J) GOTO 500
GOTO 110

rsr 159 # RETURN
300 IF (MATCH.NE.3) GOTO 400

IF (J+K.LE.I) GOTO 500
GOTO 110

400 MATCH=3
RETURN

C Can't fool this program, that's not a triangle
500 MATCH=4

RETURN
END

MOTHRA - "LIVE" STATEMENT ANALYSIS MUTANTS
DOMAIN ERROR

FIGURE 10 (continued)

28

TYPE GENERATE LIVE % %LIVE EQUIV DEAD
abs 126 27 21.4 21 78
crp 29 2 6.9 0 27
lsr 13 0 0.0 0 13
ror 99 1 1 11.1 0 88
uoi 83 13 15.7 0 70
TOTALS [350 I 53 [15.1 J 21 I 276

CLASS GENERATED LIVE j[%LIVE J EQUIV DEAD
ary 0 0 0.0 0 0
con 0 0 0.0 0 0
ctl 0 0 0.0 0 0
dmn 238 42 17.6 21 175
opm 0 0 0.0 0 0
prd 112 11 9.8 0 101
scl 0 0 0.0 0 0
stm 0 0 0.0 0 0

SUPERCL [GENERATED LIVE [%LIVE EQUIV II DEAD
all 350 53 15.1 21 276
cca 0 0 0.0 0 0
pda 350 53 15.1 21 276
sal 11- - 0 0 0.0 H0 1.0 ý

MOTHRA - PREDICATE & DOMAIN MUTANTS
DOMAIN ERROR

TABLE 6

29

SUBROUTINE TRIANGLE(I,J,K,MATCH)

integer i,j,k,match
C MATCH is output from the subroutine:
C MATCH = I IF THE TRIANGLE IS SCALENE
C MATCH = 2 IF THE TRIANGLE IS ISOSCELES
C MATCH = 3 IF THE TRIANGLE IS EQUILATERAL
C MATCH = 4 IF NOT A TRIANGLE
C After a quick confirmation that it's a legal
C triangle, detect any sides of equal length

IF (I .LE. 0 .OR. J .LE. 0 .OR. K .LE. 0) GOTO 500
MATCH=0
IF (-I.NE.J) GOTO 10 -- DOMAIN ERROR
MATCH=MATCH+1

abs 17 # MATCH = NEGABS (MATCH) + I
abs 18 # MATCH = ZPUSH (MATCH) + 1
uoi 283 # MATCH (- MATCH) + 1
crp 135 # MATCH = ZPUSH (MATCH) + 1
abs 20 # MATCH = NEGABS (MATCH + 1)
abs 21 # MATCH = ZPUSH (MATCH + 1)
uoi 284 # MATCH - - (MATCH + 1)
uoi 285 # MATCH = ++ (MATCH + 1)
uoi 286 # MATCH = - - (MATCH + 1)
10 IF (I.NE.K) GOTO 20

MATCH=MATCH+2
abs 29 # MATCH = NEGABS (MATCH) + 2
uoi 291 # MATCH = (- MATCH) + 2
abs 33 # MATCH = ZPUSH (MATCH + 2)
20 IF (J.NE.K) GOTO 30

MATCH=MATCH+3
abs 45 # MATCH = ZPUSH (MATCH + 3)
30 IF (MATCH.NE.0) GOTO 100
C Confirm it's a legal triangle before declaring it to be scalene

IF (I+J.LE,K) GOTO 500
IF (J+K.LE.I) GOTO 500
IF (I+K.LE.J) GOTO 500
MATCH=I
Return

C Confirm it's a legal triangle before declaring it to be isosceles
C or equilateral
100 IF (MATCH.NE.1) GOTO 200
abs 83 # 100 IF (NEGABS (MATCH) .NE. 1) GO TO 200
abs 84 # 100 IF (ZPUSH (MATCH) .NE. 1) GO TO 200
uoi 321 # 100 IF ((- MATCH) .NE. 1) GO TO 200
uoi 322 # 100 IF ((++ MATCH) .NE. 1) GO TO 200
crp 144 # 100 IF (MATCH .NE. 0) GO TO 200
uoi 324 # 100 IF (MATCH .NE. (- 1)) GO TO 200
ror 235 # 100 IF (MATCH .GT. 1) GO TO 200

MOTHRA - "LIVE" PREDICATE & DOMAIN MUTANTS
DOMAIN ERROR

FIGURE 11
ror 236 # 100 IF (MATCH .GE. 1) GO TO 200

30

ror 237 # 100 IF (.TRUE.) GO TO 200
IF (I+J.LE.K) GOTO 500

abs 86 # IF ((NEGABS (I) + J) .LE. K) GO TO 500
abs 87 # IF ((ZPUSH (I) + J) .LE. K) GO TO 500
uoi 325 # IF (((- I) + J) .LE. K) GO TO 500
abs 88 # IF ((I + NEGABS (J)) .LE. K) GO TO 500
abs 90 # IF ((I + ZPUSH(J)) .LE. K) GO TO 500
abs 92 # IF (NEGABS (I - J) .LE. K) GO TO 500
abs 93 # IF (ZPUSH(I + J) .LE. K) GO TO 500
uoi 326 # IF ((- (I + J)) .LE. K) GO TO 500
uoi 327 # IF ((++ (I + J)) .LE. K) GO TO 500
uoi 328 # IF ((- - (I + J)) .LE. K) GO TO 500
abs 95 # IF ((I + J) .LE. NEGABS (K)) GO TO 500
abs 96 # IF ((I + J) .LE. ZPUSH (K)) GO TO 500
uoi 329 # IF ((I + J) .LE. (- K)) GO TO 500
ror 238 # IF ((I + J) .LT. K) GO TO 500
ror 239 # IF ((I + J) .EQ. K) GO TO 500
ror 240 # IF ((I + J) .NE. K) GO TO 500
ror 241 # IF ((I + J) .GT. K) GO TO 500
ror 242 # IF ((1 + J) .GE. K) GO TO 500
ror 243 # IF (.TRUE.) GO TO 500
110 MATCH=2

RETURN
200 IF (MATCH.NE.2) GOTO 300
abs 99 # 200 IF (ZPUSH (MATCH) .NE. 2) GO TO 300
ror 247 # 200 IF (MATCH .GT. 2) GO TO 300

IF (I+K.LE.J) GOTO 500
abs 102 # IF ((ZPUSH (I) + K) .LE. J) GO TO 500
abs 105 # IF ((I + ZPUSH(K)) .LE. J) GO TO 500
abs 108 # IF (ZPUSH(I + K) .LE. J) GO TO 500
abs 111 # IF ((I + K) .LE. ZPUSH (J)) GO TO 500

COTO 110
300 IF (MATCH.NE.3) GOTO 400
abs 114 # 300 IF (ZPUSH (MATCH) .NE. 3) GO TO 400
ror 259 # 300 IF (MATCH .GT. 3) GO TO 400

IF (J+K.LE.1) GOTO 500
abs 117 # IF ((ZPUSH (J) + K) .LE. I) GO TO 500
abs 120 # IF ((J + ZPUSH(K)) .LE. I) GO TO 500
abs 123 # IF (ZPUSH(J + K) .LE. I) GO TO 500
abs 126 # IF ((J + K) .LE. ZPUSH (I)) GO TO 500

GOTO 110
400 MATCH=3

RETURN
C Can't fool this program, that's not a triangle
500 MATCH=4

RETURN
END

MOTHRA - "LIVE" PREDICATE & DOMAIN MUTANTS
DOMAIN ERROR

FIGURE 11 (continued)

31

The next large group of mutants which were not killed were
examined. These replaced the statement: IF (I+J .LE. K) GOTO 500.
Again, by the large number of mutants remaining in this group, it
was clear that this statement was not being executed. Looking at the
previous statement: IF (MATCH .NE. 1) GOTO 200 indicated that
MATCH was not being set to 1. MATCH was not set to 1 because, as
indicated by the first group of mutants, the statement MATCH =
MATCH + 1 was not executed. For each group of mutants, the flow of
execution returned to the same point and it was finally noticed that
the IF statement: IF (-I .NE. J) GOTO 10 was in error. It should have
been: IF (I .NE. J) GOTO 10!

Overall, it was found that mutating for predicate and domain
mutants provided too much information for this small non-critical
testing experiment. It was easier to locate an error (domain error)
when statement analysis mutants were created. However, the same
conclusions were drawn as to what caused the error in the program -
it just took the test personnel much longer.

7.3 RXVP80

The same domain error was created by modifying the
subroutine triangle via the VAX/VMS editor. The program was then
input to RXVP80, instrumented (insertion of software probes) for DD-
PATH coverage and run against the previous set of test cases. After
additional test cases were added, only 86% of the paths had been
executed. RXVP80 identified DD-PATHs 5, 19, 20 and 21 as paths
that were not executed (ref FIGURE 12).

This led to investigation of the DD-PATH report which identifies
each DD-PATH, ref FIGURE 7. DD-PATH 5 is the FALSE branch of: IF
(-I .NE. J) GOTO 10, which meant that for none of the test cases was
-I = J. On first examination of the program, it appears that inputting
(2,-2,2) for the sides of the triangle would cause this DD-PATH to be
traversed. However, closer examination revealed that a previous
statement checked for negative input values. If negative input was
encountered, then the program control flow jumps to a statement at
the end of the program. The result is that this DD-PATH could never
be exercised, and that the assignment statement on this DD-PATH
which sets MATCH to I would not occur. DD-PATHs 19, 20, and 21
were also not exercised. DD-PATH 19, 20, and 21 emerge from the
false branch of: IF (MATCH .NE. 1) GOTO 200. This means that for

32

- - -I- - I - - - - - - - - - - - - - -

I ra I I
1 0

I~

1 1 1

IE-' I Z

lOZI

ra- I El-

X o

1 > I I x

l- I lE-4 I XX

I IWI I x

I IH I E-

1>4 I IZI X XX

I Z ~It X X XX

w 1 0 1 XXX x X
Il- I E-4l XXW x x X
I c)l I XX x x X

I4 l l XXX I X x ('4 l
I I lC1l XXX x X

III xXX X x x X
I WI rXX X X x X
I I II xXX X X x I i 111

I 1W 0~l XXX X X XX X

I1 10.01 XXXX x X XX x I H
I0 IW 01 XXXX x Xx XX X X

I~ El~ CJ XXI X X X
IC) 1011 XXXX Xxx x XXX X X X XWW

1, IWII XXX X XXX X X X) X I U0

IE-i I II XXXX xXX X X X XX X X xx xi L)

lE~I I.: XXXX xxxxxxxxxx X XX XX X XI 0

I~E IA 01

(aI I D4(N01
E4 I x4 I 2

I COD I U) a0 *ru I u I
I a E41 0- 0C I z

1I 0 4

I z O
I II W W

--------------- ------
a I E- I X I I z
IA4 wm HH 04 I1 -W wI Dm0HC4c)% -O 4(Vu)Wr DO

I 0 mE- clE~ I 00
5I 0

DD-PATH EXECUTION
(DOMAIN ERROR)

FIGURE 12

33

these DD-PATHs never to be executed, MATCH must not equal I at
any point in the program. Looking back again at FIGURE 8, MATCH
never equals 1 because DD-PATH 5 was never exercised by the test
data. Thus DD-PATHS 19, 20, and 21 these can never be exercised
because DD-PATH 5 was never taken. Upon close examination of the
predicate of DD-PATH 5: IF (-I .NE. J) the error was realized. It
should be: IF (I .NE. J)!

8.0 MISSING STATEMENT ERROR

The triangle program was modified, such that statement 17,
MATCH = 0 was removed from the program (ref FIGURE 13).

8.1 MOTHRA

Using MOTHRA the statement analysis class of mutants was
selected. There were 242 mutants created for the triangle
subroutine. Using the original set of test cases, test case 1, test input
(3,4,5) gave an incorrect output on the changed program. The output
showed that the triangle was "isosceles", however the correct output
for these values is a "scalene" triangle. Twelve other test cases gave
incorrect outputs. At the end of 23 test cases, 71 mutants remained
alive (ref TABLE 7).

In checking the live mutants, it was evident that certain
statements were not being executed and thus the mutants could not
be killed (ref FIGURE 14). These statements followed the false
branch of the predicate: IF (MATCH .NE. 0) GOTO 100, which means
that if MATCH = 0 the control flow goes to the statement IF (I+J .LE.
K) GOTO 500. However, his statement was never being executed.
Thus, it was clear that there was a problem in the program such that
MATCH was never set to zero and the missing statement (i. e.,
MATCH = 0) was found.

8.2 RXVP80

The modified triangle program was input to RXVP80 along with
the same test cases as previously entered. The DD-PATH execution
report showed that 100% execution coverage was obtained (ref
FIGURE 15)! The reason was that VMS was automatically initializing
memory (and therefore MATCH), to zeru, and the missing statement
error was not found. The static analysis capability of RXVP80 was
then used to identify SET/USE errors. SET/USE errors occur when

34

SUBROUTINE TRIANGLE(I,J,K,MATCH)

integer i,j,k,match

C MATCH is output from the subroutine:
C MATCH = I IF THE TRIANGLE IS SCALENE
C MATCH = 2 IF THE TRIANGLE IS ISOSCELES
C MATCH = 3 IF THE TRIANGLE IS EQUILATERAL
C MATCH = 4 IF NOT A TRIANGLE

C After a quick confirmation that it's a legal
C triangle, detect any sides of equal length

IF (I .LE. 0 .OR. J .LE. 0 .OR. K .LE. 0) GOTO 500
MATCH = 0 -- MISSING STATEMENT
IF (I.NE.J) GOTO 10
MATCH=MATCH+1

10 IF (I.NE.K) GOTO 20
MATCH=MATCH+2

20 IF (J.NE.K) COTO 30
MATCH=MATCH+3

30 IF (MATCH.NE.0) GOTO 100

C Confirm it's a legal triangle before declaring it to be scalene
IF (I+J.LE.K) GOTO 500
IF (J+K.LE.I) GOTO 500
IF (I+K.LE.J) GOTO 500
MATCH= I
Return

C Confirm it's a legal triangle before declaring
C it to be isosceles or equilateral
100 IF (MATCH.NE. 1) GOTO 200

IF (I+J.LE.K) GOTO 500
110 MATCH=2

RETURN
200 IF (MATCH.NE.2) GOTO 300

IF (I+K.LE.J) GOTO 500
GOTO 110

300 IF (MATCH.NE.3) GOTO 400
IF (J+K.LE.I) GOTO 500
GOTO 110

400 MATCH=3
RETURN

C Can't fool this program, that's not a triangle
500 MATCH=4

RETURN
END

TRIANGLE PROGRAM (MISSING STATEMENT)

FIGURE 13

35

TYPE GENERATED LIVE II %LIVE I EQUIV II DEAD
glr 128 40 31.3 0 88
rsr 37 10 27.0 0 27
san 37 10 27.0 0 27
sdl 40 11 27.5 0 29

TOTALS • 242 D 71 11 29.3 11 0 171

CLASS JGENERATED LIVE J[%LIVE U EQUIV DEAD

ary 0 0 0.0 0 0
con 0 0 0.0 0 0
ctl 165 50 30.3 0 115
dmn 0 0 0.0 0 0
opm 0 0 0.0 0 0
prd 0 0 0.0 0 0
scl 0 0 0.0 0 0
stm 77 21 27.3 0 56

SUPERCL IGENERATED LIVE %LIVE I[EQUIV DEAD

all 242 71 29.3 0 171
cca 0 0 0.0 0 0
pda 0 0 0.0 0 0
sal 242 71 29.3 0 171

MOTHRA - STATEMENT ANALYSIS MUTANTS

MISSING STATEMENT ERROR

TABLE 7

36

SUBROUTINE TRIANGLE(IJ,K,MATCH)

integer i,j,k,match

C MATCH is output from the subroutine:
C MATCH = I IF THE TRIANGLE IS SCALENE
C MATCH = 2 IF THE TRIANGLE IS ISOSCELES
C MATCH = 3 IF THE TRIANGLE IS EQUILATERAL
C MATCH = 4 IF NOT A TRIANGLE
C After a quick confirmation that it's a legal
C triangle, detect any sides of equal length

IF (I .LE. 0 .OR. J .LE. 0 .OR. K .LE. 0) GOTO 500
MATCH = 0 -- MISSING STATEMENT
IF (I.NE.J) GOTO 10
MATCH=MATCH+ I

10 IF (I.NE.K) GOTO 20
MATCH=MATCH+2

20 IF (J.NE.K) GOTO 30
MATCH=MATCH+3

30 IF (MATCH.NE.0) GOTO 100

C Confirm it's a legal triangle before declaring it to be scalene
IF (I+J.LE.K) GOTO 500

rsr 142 # RETURN
san 179 # *** TRAP *
sdi 216 # CONTINUE
rsr 143 # IF ((I + J) .LE. K) RETURN
san 180 # IF ((I + J) .LE. K) *** TRAP **

sdl 217 # IF ((I + J) .LE. K) CONTINUE
glr 41 # IF ((I + J) .LE. K) GO TO 400
glr 42 # IF ((I + J) .LE. K) GO TO 300
glr 43 # IF ((I + J) .LE. K) GO TO 200
glr 44 # IF ((I + J) .LE. K) GO TO 110
glr 45 # IF ((I + J) .LE. K) GO TO 100
glr 46 # IF ((I + J) .LE. K) GO TO 30
glr 47 # IF ((I + J) .LE. K) GO TO 20
glr 48 # IF ((I + J) .LE. K) GO TO 10

IF (J+K.LE.I) GOTO 500
rsr 144 # RETURN
san 181 # *** TRAP ***
sdl 218 # CONTINUE
rsr 145 # IF ((J + K) .LE. I) RETURN
san 182 # IF ((J + K) .LE. I) *** TRAP ***

sdi 219 # IF ((J + K) .LE. I) CONTINUE
glr 49 # IF ((J + K) .LE. I) GO TO 400
glr 50 # IF ((J + K) .LE. I) GO TO 300
glr 51 # IF ((J + K) .LE. I) GO TO 200
glr 52 # IF ((J + K) .LE. I) GO TO 110

MOTHRA "LIVE" STATEMENT ANALYSIS MUTANTS
MISSING STATEMENT ERROR

FIGURE 14

37

gir 53 # IF ((J + K) .LE. I) GO TO 100
glr 54 # IF ((J + K) .LE. I) GO TO 30
glr 55 # IF ((J + K) .LE. I) GO TO 20
glr 56 # IF ((J + K) .LE. I) GO TO 10

IF (I+K.LE.J) GOTO 500
rsr 146 # RETURN
san 183 # *** TRAP ***
sdl 220 # CONTINUE
rsr 147 # IF ((I + K) .LE. J) RETURN
san 184 # IF ((I + K) .LE. J) *** TRAP ***
sdl 221 # IF ((I + K) .LE. J) CONTINUE
glr 57 # IF ((I + K) .LE. J) GO TO 400
glr 58 # IF ((I + K) .LE. J) GO TO 300
glr 59 # IF ((I + K) .LE. J) GO TO 200
glr 60 # IF ((I + K) .LE. J) GO TO 110
glr 61 # IF ((I + K) .LE. J) GO TO 100
glr 62 # IF ((I + K) .LE. J) GO TO 30
glr 63 # IF ((I + K) .LE. J) GO TO 20
glr 64 # IF ((I + K) .LE. J) GO TO 10

MATCH=I
rsr 148 # RETURN
san 185 # *** TRAP ***
sdl 222 # CONTINUE

Return
sdi 223 # CONTINUE

C Confirm it's a legal triangle before declaring it to be isosceles
C or equilateral
100 IF (MATCH.NE.1) GOTO 200

IF (I+J.LE.K) GOTO 500
110 MATCH=2

RETURN
200 IF (MATCH.NE.2) GOTO 300

IF (I+K.LE.J) GOTO 500
rsr 156 # RETURN
san 193 # *** TRAP ***
sdl 232 # CONTINUE
rsr 157 # IF ((I + K) .LE. J) RETURN
san 194 # IF ((I + K) .LE. J) *** TRAP ***
sdl 233 # IF ((I + K) .LE. J) CONTINUE
glr 89 # IF ((I + K) .LE. J) GO TO 400
glr 90 # IF ((I + K) .LE. J) GO TO 300
glr 91 # IF ((I + K) .LE. J) GO TO 200
glr 92 # IF ((I + K) .LE. J) GO TO 110
glr 93 # IF ((I + K) .LE. J) GO TO 100
glr 94 # IF ((I + K) .LE. J) GO TO 30
glr 95 # IF ((I + K) .LE. J) GO TO 20
glr 96 # IF ((I + K) .LE. J) GO TO 10

MOTHRA - "LIVE" STATEMENT ANALYSIS MUTANTS
MISSING STATEMENT ERROR

FIGURE 14 (continued)
GOTO 110

glr 97 # GO TO 500

38

glr 98 # GO TO 400
glr 99 # GO TO 300
gir 100 # GO TO 200
glr 101 # GO TO 100
glr 102 # GO TO 30
glr 103 # GO TO 20
gir 104 # GO TO 10
rsr 158 # RETURN
san 195 # *** TRAP *
sdl 234 # CONTINUE

300 IF (MATCH.NE.3) GOTO 400
IF (J+K.LE.T) GOTO 500
GOTO 110

400 MATCH=3
RETURN

C Can't fool this program, that's not a triangle
500 MATCH=4

RETURN
END

MOTHRA - "LIVE" STATEMENT ANALYSIS MUTANTS
MISSING STATEMENT ERROR

FIGURE 14 (continued)

39

- - - - - - - - - - - - - - - - - -- - -

I c I cnl ~ 14c*4 14 -4 1-4 .-4 1-4 1

N0 I : I 04

H
Z E-4~

- - - ------ ------

I I W:

-I -- - - - -N - - - - - - - - - -

1:4 1 I Im)

I x~

N 01 0X

I U >-I

NI I I I I x
I x xI I EI

EI- I lI XX 0

z1 x xXI x
0 IEO X '0XX

NH H 101 x x
E-4- 1W Ix4 I X

x x II x x 0O

I Ix H I X x

II :t~i: xx x x xx x x x x xIZ
I ~ ~ I Po xx x > I u0

IW Il- jell XXXXX XXX X Xxx I W

104 IW lll xxxxxx x x X x Xx Ixx X D

I I I E-4X X X X
Nx 0 Ix XI XX Xx xX xX X X Xx x X X XIII XX x ý8
N lxxi) IxxzxII XXXX X X XX Xox

N ~ ~~~~~ wW 10 1 X X X X 4
- - - - - - - - --0- - - - - - - - - - - - - - - - - -

N I~ i~e~ XXX X X XX XX X

NI r4 1 XXX X E 40

N I~ LW I H

H I I E-1 0 I

HI E-4 I 1

11 In1 Hi F- C4I I z

II C/)CI

01 e I E-E

ll 0 I aIi0
II0 gE-4 u E-E-I-

DD-PATH EXECUTION
(MISSING STATEMENT ERROR)

FIGURE 15

40

variables are used before being assigned a value. None were found.
RXVP80 reports showed that MATCH was set to a value via the
statements MATCH = MATCH + 1, MATCH = MATCH + 2, and
MATCH = MATCH + 3 and therefore, as far as RXVP80 was concerned,
MATCH was set before being used. This shows a limitation of the
SET/USE capability of RXVP80!

9.0 COMPUTATION ERROR

The triangle program was modified such that statement 19,
MATCH = MATCH + I was changed to MATCH = MATCH - 1 (ref
FIGURE 16).

9.1 MOTHRA

Using MOTHRA, the class of mutants that belong to statement
analysis was selected. There were 243 mutants created for the
triangle subroutine. At the end of the set of test case inputs, 15
mutants remained alive. Looking at each mutant, one was
equivalenced since MATCH was always equal to 2 at that point in the
program. There were then 14 live mutants remaining (ref TABLE 8).
Examination of the location of the mutants in the program (ref
FIGURE 17), showed that this was the result of the false branch of the
predicate: IF (MATCH .NE. 1) never being executed (i.e., MATCH is
never equal to 1). Therefore, it was necessary to check statements
where MATCH is assigned values. Checking back in the program it
was found that at:

line # 23, MATCH = MATCH + 3
line # 21, MATCH = MATCH + 2
line # 19, MATCH = MATCH - I
line # 17, MATCH = 0

Since MATCH is originally set to zero, it never gets set to 1 on
any of the subsequent branches. It was determined that MATCH
could be set to one if: the false branch of IF (I .NE. J) is taken and
MATCH = MATCH - 1, resulting in MATCH = -1 and then the false
branch of IF (I .NE. K) is taken and MATCH = MATCH + 2 resulting in
MATCH = 1. However, for these two conditions to be false, I would
be equal to J and I would be equal to K, which means that J would be
equal to K and the false branch of IF (J .NE. K) would be taken and
MATCH = MATCH + 3 would be executed resulting in MATCH = 2.

41

SUBROUTINE TRIANGLE(I,J,K,MATCH)

integer i,j,kmatch

C MATCH is output from the subroutine:
C MATCH = I IF THE TRIANGLE IS SCALENE
C MATCH = 2 IF THE TRIANGLE IS ISOSCELES
C MATCH = 3 IF THE TRIANGLE IS EQUILATERAL
C MATCH = 4 IF NOT A TRIANGLE

C After a quick confirmation that it's a legal
C triangle, detect any sides of equal length

IF (I .LE. 0 .OR. J .LE. 0 .OR. K .LE. 0) GOTO 500
MATCH=0
IF (I.NE.J) GOTO 10
MATCH=MATCH-1 -- COMPUTATION ERROR

10 IF (I.NE.K) GOTO 20
MATCH=MATCH+2

20 IF (J.NE.K) GOTO 30
MATCH=MATCH+3

30 IF (MATCH.NE.0) GOTO 100

C Confirm it's a legal triangle before declaring it to be scalene
IF (I+J.LE.K) GOTO 500
IF (J+K.LE.I) GOTO 500
IF (I+K.LE.J) GOTO 500
MATCH=I
Return

C Confirm it's a legal triangle before declaring
C it to be isosceles or equilateral
100 IF (MATCH.NE.1) GOTO 200

IF (I+J.LE.K) GOTO 500
110 MATCH=2

RETURN
200 IF (MATCH.NE.2) GOTO 300

IF (I+K.LE.J) GOTO 500
GOTO 110

300 IF (MATCH.NE.3) GOTO 400
IF (J+K.LE.I) GOTO 500
GOTO 110

400 MATCH=3
RETURN

C Can't fool this program, that's not a triangle
500 MATCH=4

RETURN
END

TRIANGLE PROGRAM (COMPUTATION ERROR)

FIGURE 16

42

TYPE GENERATED[LIVE %LIVE EQUIV [[DEAD

glr 128 8 6.3 0 120
rsr 38 2 5.3 1 35
san 36 2 5.6 0 34
sdl 41 2 4.9 0 39

TOTALS = 243 14 -1 5.8 I 1 I 228

CLASS GENERATED LIVE %LIVE EQUIV DEAD
ary 0 0 0.0 0 0
con 0 0 0.0 0 0
ctl 166 10 6.0 1 155
dmn 0 0 0.0 0 0
opm 0 0 0.0 0 0
prd 0 0 0.0 0 0
scl 0 0 0.0 0 0
stm 77 4 5.2 0 73

SUPERCL jj GENERATfED LJ LIVE Jj %LIVE I EQUIV][DEAD
all 243 14 5.8 1 228
cca 0 0 0.0 0 0
pd a 0 0 0.0 0 0
sal 243 14 5.8 1 228

MOTHRA - STATEMENT ANALYSIS MUTANTS
COMPUTATION ERROR

TABLE 8

43

SUBROUTINE TRIANGLE(I,J,K,MATCH)

integer iJ,k,match

C MATCH is output from the subroutine:
C MATCH = I IF THE TRIANGLE IS SCALENE
C MATCH = 2 IF THE TRIANGLE IS ISOSCELES
C MATCH = 3 IF THE TRIANGLE IS EQUILATERAL
C MATCH = 4 IF NOT A TRIANGLE

C After a quick confirmation that it's a legal
C triangle, detect any sides of equal length

IF (I .LE. 0 .OR. J .LE. 0 .OR. K .LE. 0) GOTO 500
MATCH=0
IF (I.NE.J) GOTO 10
MATCH=MATCH-I -- COMPUTATION ERROR

10 IF (I.NE.K) GOTO 20
MATCH=MATCH+2

20 IF (J.NE.K) GOTO 30
MATCH=MATCH+3

30 IF (MATCH.NE.0) GOTO 100

C Confirm it's a legal triangle before declaring it to be scalene
IF (I+J.LE.K) GOTO 500
IF (J+K.LE.I) GOTO 500
IF (I+K.LE.J) GOTO 500
MATCH=I
Return

C Confirm it's a legal triangle before declaring it to be isosceles
C or equilateral
100 IF (MATCH.NE.1) GOTO 200

IF (I+J.LE.K) GOTO 500
rsr 152 # RETURN
san 188 # *** TRAP ***
sdl 227 # CONTINUE
rsr 153 # IF ((I + J) .LE. K) RETURN
san 189 # IF ((I + J) .LE. K) *** TRAP **
sdl 228 # IF ((I + J) .LE. K) CONTINUE
glr 73 # IF ((I + J) .LE. K) GO TO 400
glr 74 # IF ((I + J) .LE. K) GO TO 300
glr 75 # IF ((I + J) LE. K) GO TO 200
gir 76 # IF ((I + J) .LE. K) GO TO 110
glr 77 # IF ((I + J) .LE. K) GO TO 100
glr 78 # IF ((I + J) .LE. K) GO TO 30
glr 79 # IF ((I + J) .LE. K) GO TO 20
glr 80 # IF ((I + J) .LE. K) GO TO 10

110 MATCH=2

MOTHRA - "LIVE" STATEMENT ANALYSIS MUTANTS
COMPUTATION ERROR

FIGURE 17

44

RETURN
200 IF (MATCH.NE.2) GOTO 300

IF (I+K.LE.J) GOTO 500
GOTO 110

300 IF (MATCH.NE.3) GOTO 400
IF (J+K.LE.I) GOTO 500
GOTO 110

400 MATCH=3
RETURN

C Can't fool this program, that's not a triangle
500 MATCH=4

RETURN
END

MOTHRA "LIVE" STATEMENT ANALYSIS MUTANTS
COMPUTATION ERROR

FIGURE 17 (continued)

45

Therefore, it was clear that MATCH never stays equal to 1 for this
program. Upon closer examination, it was seen that this was a result
of one of the assignment statements being in error and it was found
that MATCH = MATCH - I on line 19. It should be MATCH = MATCH +
1, therefore the error was found.

9.2 RXVP80

The modified triangle program was input to RXVP80, using the
same set of test cases in addition to several new test cases. The DD-
PATH execution report showed that DD-PATHs 19, 20, and 21 were
not executed (ref FIGURE 18). Examination of the DD-PATHs not
traversed showed that this was the result of DD-PATH 19 never
being taken. This meant that MATCH was never equal to one. As in
the MOTHRA system, the statements where MATCH is assigned a
value were examined. These statements were as follows:

MATCH = MATCH + 3 on DD-PATH 9
MATCH = MATCH + 2 on DD-PATH 7
MATCH = MATCH - 1 on DD-PATH 5
MATCH = 0 on DD-PATH 3

For the reasons stated in the previous MOTHRA section, it was clear
that one of the assignment statements (i.e., MATCH = MATCH - 1) was
in error. Again, the error was found.

10.0 CONCLUSION

Both tools performed very well. It was felt that RXVP80 was
easier to learn and use, and easier to find the error types that were
created. The DD-PATH concept is very clear and the graphical chart
that was manually created aided understanding of this test
technique. The DD-PATH concept has been used on many large-scale
software development efforts and has proven its usefulness.

MOTHRA is a newer and much more complex system (but a
more powerful testing system). It was more difficult to learn and
use and very time consuming to equivalence mutants. With so many
mutants being created, especially for the Predicate and Domain
mutant class, using MOTHRA was difficult to detect the errors.
Except for the Missing Statement Error, RXVP80 found the errors and
displayed them to the tester in a more understandable manner.
Overall, while mutation testing certainly .,as the potential to surpass

46

I~~~ -- --- -- ------

IN

I Z E- I

El W

I A I In- m I

I a

IN mN :N (N 1

I IO x
NO I in x:

W x
NH I li x

I DI X
1NE-4 I El4 I X 0

iUi x
x

W x

Q0.1 xx
lI W HO X >1
HI- 0i~ x xx

I z I IDI x xx
ll xxxx x

1 0 I~1 x x x x
H I lxi xxx x x

It I- E-1 I I xXX X x x
Di I I i xxx x x x x x lii

II iu x~I xx x x x xx x
W~ 01xxx x x xxx x I x

ii0 xx x x xxx x x x I
W~ x xx x x xxxx x x

lE' ixx x xxxx x x x x x x 111
11 Ac :41. xxx xx xxxx x x xxx i E.
H WE. i0 xxxxxxxxx x xx xx xx x i

,no!, i xxxxxxxxxxx x x xx xx xx D
ii xxxxxxxxxxxxx x xx xx x xxx IC

N I)i xxxxxxxxxxxxxxxxxx xxxxxxxxi oxWm

II~~~~ 1014 I c~

II C4 a410 a4 *.4

II (I r0 0ý E

U() I E-4 I 1 0Z
014

I---I4

N ID DID
N Im E-4 lO i I4Z

N~ E- 10 I

DD-PATH EXECUTION
(COMPUTATION ERROR)

FIGURE 18

47

all other forms of testing, for certain classes of errors (i.e., missing
statement errors), the much easier to use static and dynamic style of
testing provides comparable results.

Mutation Testing's different mutant operators, however, allow
an extremely thorough testing strategy and is especially important
for testing mission critical applications. It allows testers to match the
degree of testing to the criticality of the application and the amount
of resources available for testing. Its statement mutants allow it to
provide statement level coverage, which overlaps RXVP80's
capabilities.

Future work is planned to enhance the MOTHRA system and
ensure a more usable testing system. As a result of this testing
project, recommendations for enhancements include:

Automated support to determine equivalent mutants. If all
classes of mutants are enabled, there are on the order of N2 mutants
created for an N line computer program! A significant number of
these, as shown in the test sample, may be equivalent to the original
program. Determining equivalent mutants is a time consuming
process and requires detailed knowledge of the computer program.
It could be very difficult for an independent tester to determine if a
program is equivalent as intimate knowledge of the details of the
program are necessary. This limits the variety of personnel that can
easily use the tool. Automated support for determining equivalent
programs would significantly increase the usability of the tool.

State-of-the-art user interface. MOTHRA's current menu
driven user interface, while adequate, should be more helpful in
guiding users through the proper sequence of steps necessary to
execute the tool. Determining the proper sequence to create the
mutants, execute the program with/without mutants, compare the
expected output with the mutant program's output, equivalence
programs, etc. should be part of the tool's user interface. It should
display the menus with those options applicable only at that point in
time in the testing process. This would ensure that a user would not
be allowed to, for example, perform equivalence functions without
first creating mutants, and/or execute the mutant program without
saving the correct output results. In addition, on-line help at each
menu option should also be available to explain each menu option.

48

Test case generation. Automated support to provide additional
test cases to kill the remaining mutants would also enharce the tool's
usability. Currently, test case generation, is a manual process which
is assisted by the results of various MOTHRA reports which display
the type of live mutants, number of equivalenced mutants and dead
mutants. From this information, the user must deduce which test
case(s) may kill those particular mutants. Automating the generation
of test cases would relieve some of the burden from the user. While
100% automation may not be possible, some. support would increase
overall productivity of the tester and allow the testing process to be
completed in a shorter time frame. This enhancement is applicable
not only to MOTHRA but to most all testing tools (including RXVP80)
and research is currently being performed in this area by academia,
industry, and government.

O S GOVERNMIENT PRINTINC, OFFICE . . .

49

MISSION

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air
Force Command, Control, Communications and Intelligence (C3 1) activities

for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of C3 1 systems. In addition,

Rome Laboratory's technology supports other AFSC Product Divisions, the
Air Force user community, and other DOD and non-DOD agencies. Rome

Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences

and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reliability/maintainability and testability.

